On Partially Observable MDPs and BDI Models
نویسندگان
چکیده
Decision theoretic planning in ai bymeans of solving Partially ObservableMarkov decision processes (pomdps) has been shown to be both powerful and versatile. However, such approaches are computationally hard and, from a design stance, are not necessarily intuitive for conceptualising many problems. We propose a novel method for solving pomdps, which provides a designer with a more intuitive means of specifying pomdp planning problems. In particular, we investigate the relationship between pomdp planning theory and belief-desire-intention (bdi) agent theory. The idea is to view a bdi agent as a specification of an pomdp problem. This view is to be supported by a correspondence between an pomdp problem and a bdi agent. In this paper, we outline such a correspondence between pomdp and bdi by explaining how to specify one in terms of the other. Additionally, we illustrate the significance of a correspondence by showing empirically that it yields satisfying results in complex domains.
منابع مشابه
MDPs Semi - Markov decision processes Hidden Markov models Partially observable SMDPs Hierarchical HMMs
متن کامل
Learning Policies in Partially Observable MDPs with Abstract Actions Using Value Iteration
While the use of abstraction and its benefit in terms of transferring learned information to new tasks has been studied extensively and successfully in MDPs, it has not been studied in the context of Partially Observable MDPs. This paper addresses the problem of transferring skills from previous experiences in POMDP models using high-level actions (options). It shows that the optimal value func...
متن کاملMultiple-Environment Markov Decision Processes
We introduce Multi-Environment Markov Decision Processes (MEMDPs) which are MDPs with a set of probabilistic transition functions. The goal in a MEMDP is to synthesize a single controller with guaranteed performances against all environments even though the environment is unknown a priori. While MEMDPs can be seen as a special class of partially observable MDPs, we show that several verificatio...
متن کاملProbabilistic Planning with Risk-Sensitive Criterion
Probabilistic planning models and, in particular, Markov Decision Processes (MDPs), Partially Observable Markov Decision Processes (POMDPs) and Decentralized Partially Observable Markov Decision Processes (Dec-POMDPs) have been extensively used by AI and Decision Theoretic communities for planning under uncertainty. Typically, the solvers for probabilistic planning models find policies that min...
متن کاملPerformability Optimization using Linear Bounds of Partially Observable Markov Decision Processes
Markov Decision Processes (MDPs) and Partially Observable MDPs (POMDPs) have been proposed as a framework for performability management. However, exact solution of even small POMDPs is very difficult because of their potentially infinite induced state spaces. In this paper, we present new lower bounds on the accumulated reward measure for MDPs and POMDPs. We describe how the bounds can be used ...
متن کامل